
Non-universal corrections to scaling for a lattice model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 1771

(http://iopscience.iop.org/0305-4470/16/8/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 1771-1794. Printed in Great Britain 
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Scotland 

Received 10 November 1982 

Abstract. A field theoretic model derived from a lattice spin model is studied within the 
framework of the renormalisation group. To second order in E = 4 - d, where d is the 
dimensionality of the lattice, the non-universal fixed point and the amplitude of the leading 
correction to scaling for the susceptibility are determined for two types of lattice. The 
functional form obtained for the amplitude compares qualitatively well with high- 
temperature series work; in particular, it gives a prediction for the amplitude of corrections 
to scaling for the spin-; Ising model on a body centred cubic lattice in three dimensions 
that is in fair numerical agreement with high-temperature series estimates. 

1. Introduction 

Until some recent work had been performed (Nickel 1982, Roskies 1981) there existed 
a discrepancy between estimates for critical exponents which are expected to be 
universal on the basis of renormalisation group (RG) arguments. The values yielded 
by high-temperature series analysis (see Domb 1974, Gaunt 1982 for reviews) and 
those given by RG techniques (Baker ef a1 1976, 1978, Le Guillou and Zinn-Justin 
1977, Zinn-Justin 1982) were not reconcilable within the estimated accuracies of the 
different methods. This difference was particularly marked for the exponent y govern- 
ing the divergence of the susceptibility as the critical temperature is approached. 
Nickel (1982) and Roskies (1981) introduced terms representing confluent (weaker) 
singularities into the high-temperature series analysis and studied the effect of these 
terms on the estimates for exponents. They found that the modified high-temperature 
series estimates could then be reconciled with the existing RG results. Using the value 
of the confluent singularity exponent calculated by RG methods, Nickel (1982) 
examined the general spin-s Ising model with nearest-neighbour interactions only on 
a body centred cubic lattice in three dimensions. He found that the amplitude of the 
confluent singularity term was a function of the spin s and in addition he was able to 
estimate the amplitude of the confluent singularity for the spin-i model. Roskies 
(1981) also estimates the amplitude for the spin-; model. 

Confluent singularities or corrections to scaling arise naturally in the RG approach 
(Wegner 1972). It further predicts that the amplitude of the leading corrections to 
scaling should be a function of the coupling constant g, that it should be characterised 
by an exponent w and that the amplitude vanishes if the coupling constant coincides 
with the fixed point g = g*. The purpose of this paper is to study the field theory 
arising from the transformation of a discrete lattice spin model with nearest-neighbour 
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interactions only. We seek to find the extent to which the results of Nickel’s calculations 
are in agreement with field theoretic estimates for such non-universal quantities. 

The lattice spin model we will use is defined in § 2. A field theory is obtained by 
performing a Hubbard transformation (Hubbard 1972, Baker 1962) on the lattice 
spin model, The field theory we obtain differs in a few respects from a normal c $ ~ ( x )  
field theory. The presence of the lattice means that integrals in momentum space run 
over the Brillouin zone of the specific lattice type. In addition, the Hubbard transfor- 
mation generates interactions of arbitrary order in 4’ leading to a number of extra 
diagrams to be considered. 

In 8 3 we use the formulation of the renormalisation group given by Zinn-Justin 
(1973), that of working with the bare vertex functions to maintain contact with the 
parameters of the lattice Hamiltonian. The vertex functions are expressed as functions 
of the reduced temperature. 

Section 4 contains the graphical expansion for the bare vertex functions. We keep 
graphs with up to two loops in order to calculate the RG functions p (g), y+z(g), y+ (g) 
to second order in g and E .  We express these functions in terms of graphs to identify 
which graphs contribute at a given order in E and g. 

In order to reduce the number of graphs that must be evaluated we use arguments 
based on universality of exponents in 0 5 .  The universality of exponents (the foremost 
result of RG studies) which are obtained from the RG functions p ( g ) ,  y42(g), y4(g) at 
the fixed point g = g* gives rise to conditions on the coefficients of these functions as 
power series in E and g. This policy of using universal results greatly reduces the 
number of graphs that must be evaluated in general dimension d to provide an 
expansion in E for non-universal quantities such as the fixed point and the amplitude 
of the leading corrections to scaling. The details of the transform methods that make 
possible the analytic continuation in d for the required graphs are given in appendices 
1 and 2 for two different lattice types. The results enable the determination of the 
fixed point, g*, to be made to O ( E * )  in an asymptotic series for both the simple cubic 
(sc) and body centred cubic (BCC) lattices. 

In § 6 an expression for the susceptibility above the critical temperature is derived. 
It is more complicated than in a 44(x )  theory as the external field conjugate to the 
spin variable couples in a more complex way to the field d l .  

We follow the prescription of Bruce and Wallace (1976) and solve the RG equations 
by the method of characteristics in § 7. By relating vertex functions near criticality to 
those far from criticality where the perturbation expansion may be trusted, the 
crossover scaling functional form of the susceptibility may be determined. This allows 
the functional form of the amplitude of the leading corrections to scaling to be found 
for the coupling constant g close to its fixed point value g* and hence we can estimate 
the numerical value of the amplitude for the spin-4 Ising model on the sc and BCC 
lattices in three dimensions. 

Section 8 summarises the results of our analysis. These are discussed and compared 
with estimates available from high-temperature series. 

Appendices 1 and 2 deal with the analytic continuation in d for various integrals 
for the sc and BCC lattices respectively. This is done by means of integral transform 
methods. 

Appendix 3 deals with the generalisation of the model described in § 2 to the 
classical Heisenberg case where the spin variable has n components. Similar analysis 
for this case is presented and again compared with the more sparse information 
available from high-temperature series. 
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2. Model 

The model studied in this paper was proposed by Wallace (unpublished) and differs 
from the standard lattice spin model. It is formulated on a lattice of dimensionality 
d with lattice spacing A-’ and N sites. The dimensionless configurational energy has 
the form 

N Ye 
--=; KijSiSj+ 1 HIS, kT i , j = i  i = l  

with sums running over lattice sites i and j .  The exchange coupling constant K,, is a 
matrix connecting spins s, and s, at sites i and j respectively and we will consider the 
case of nearest-neighbour interactions only. The spatially dependent external field 
HI couples linearly to the spin variable s,. The spin variable s, at each site i is the 
sum of L independent copies of a ‘spin $’ at that site normalised with a factor of L-’’2. 

L 
SI = L - l r 2  rzm with rrm = *l;  m = 1,  . . . , L. (2.2) 

Two special cases of this model are of note. The case L = 1 is the ordinary spin-; 
Ising model. The case L = 00 is the free Gaussian model. 

In order to extract a field theory from this lattice model a Hubbard transformation 
(Hubbard 1972, Baker 1962) is used. This employs the trick of regarding the partition 
function, 2, as the result of performing a Gaussian integral with respect to a discrete 
field variable by completing the square in the field variable. This decouples the terms 
in the spin variables s, and s, so that the configurational sum over the spin variables 
in the partition function may be explicitly performed. 

z { H , }  = exp(-%/kT) 

m = l  

{I,) 

where C is a constant independent of 4, and Hi which contributes only to an overall 
scale factor and will be omitted in the following. 

Interaction terms in 4; will be generated by expanding the In cosh term of (2.3) 
for zero external field. One of these terms will be quadratic in 4; and it is convenient 
to separate the terms occurring in the exponential in (2.3) into two pieces, 

with 

(2.4) 

N 
Zint= [L In C O S ~ ( ~ ~ L - ~ / * ) - & ~ : ] .  

i = l  
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The reduced Hamiltonian %(*) defined in (2.5) contains all the terms quadratic in 

We introduce Fourier variables by 
the field while Xint defined in (2.6) specifies the interaction terms. 

where ri is the position vector of the site i and the summation over k extends over 
the Brillouin zone of the lattice. For an isotropic nearest-neighbour exchange coupling 
constant K,i we may immediately express (2.5) in momentum space using (2.7), 

where 
Y 

K ( k )  = C K~~ exp[ik (ri - r, )] = K 1 exp(ik a, )  (2.9) 

where a are the lattice vectors of the nearest neighbours, K is the magnitude of the 
isotropic exchange coupling constant and v is the coordination number of the lattice. 

Using the relation (2.7) we may also express the interaction terms given by (2.6) 
in momentum space as follows: 

( i - 1 )  n = l  

(2.10) 

where the vector nature of the momenta {k} has been suppressed and the A function 
imposes momentum conservation at a vertex modulo a reciprocal lattice vector G by 

X 

if k ,  = G for G some reciprocal lattice vector, 
n = l  

= O  otherwise. (2.11) 

We consider the thermodynamic limit in which the number of sites of the lattice, 
N, tends to infinity. In  this limit the discrete sum over the N points on the Brillouin 
zone is replaced by an integral over the momentum k according to the prescription 
for a general function f ( & )  

(2.12) 

where the integral runs over the Brillouin zone of the lattice and V is the volume of 
a unit cell. For a lattice of general dimensionality d and a lattice spacing A-', V takes 
the form 

V = w K d  (2.13) 

where w is a dimensionless constant dependent on the lattice type but is independent 
of d for the sc and BCC lattices. 
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Using (2.12) for taking the thermodynamic limit we may write for (2.8) 
BZ 

(2.14) 

The field dk is now rescaled so that it assumes its usual canonical dimensions in 
terms of the momentum scale '2. This is to highlight certain features of the calculation 
by making canonical dimensions explicit and is for convenience only: 

( k )  = v1/2A-'q!)k. (2.15) 

p 2 '  = _- " d J ddk ; (K- ' (k )  - 1)dkd-k. 
(27r) 

Expressing (2.14) in terms of the rescaled field d ( k )  defined in (2.15) yields 
BZ 

% 121 = - ( 2  T ) - ~  I ddk t ( A 2 K - l ( k ) - A 2 ) 4 ( k ) d ( - k ) .  (2.16) 

Equation (2.16) together with (2.9) for K - ' ( k )  and the definition of the zeroth- 

(d(41)4(42))=Gb2'(qi9 K,  A)S'd'(q1+q2) (2.17) 

order bare propagator in momentum space by 

enables an explicit form for the propagator to be given, 

(2.18) 

We now examine the interaction terms of the theory given by (2.10) for Rint in 
terms of the rescaled field d ( k )  defined in (2.15) after taking the thermodynamic limit 
using (2.12). We may use the property that the propagator (2.18) is invariant under 
the replacement of momentum q by q + G where G is some reciprocal lattice vector 
to express the A-function of (2.11) by a S function in the following fashion. We may 
order the interaction terms as a power series in the dimensionless coupling constant 
g defined by 

g = 2wL-l (2.19) 

giving for (2.16) 

This expression keeps track of all Umklapp processes which arise from the original 
A-function. It should be noted that no approximation has been made in obtaining a 
field theory in terms of the continuous variable #(k) other than taking the thermo- 
dynamic limit. We have a well defined field theory with a bare propagator in momen- 
tum space given by (2.18) which explicitly displays the presence of the lattice and 
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interaction terms given by (2.20) where the canonical dimension of the vertex is made 
explicit (see BrCzin 1982). 

3. Renormalisation group 

We examine the field theory by considering the N-point vertex functions. These 
vertex functions are the sum of all the connected one-particle-irreducible graphs with 
N external legs each carrying a momentum q, (r = 1, . . . , N) (N is now a parameter, 
not the number of sites). In the following all indices on the momenta will be 
suppressed. The vertex functions may be expanded as a power series in g and 
additionally depend on K ,  A and (9). 

The formulation of the renormalisation group we shall use is due to Zinn-Justin 
(1973) (Amit 1978). The RG equations determine the asymptotic behaviour of the 
bare vertex functions as criticality is approached. In this limit they become independent 
of the scale of the cut-off, A.  The equation for the N-point vertex function takes the 
form 

where t is a measure of the deviation of the temperature variable K from its true 
critical value K,. The term A r ( N '  is smaller by order t / A 2 ,  q2/A2 up to powers of 
ln(t/Az), ln(q2/Az) in an E expansion compared with the leading terms retained in 
r fN ' (q ;  t ,  g, A). The region t << A', q2<< A' is the critical regime we aim to study. 
Keeping only the leading terms in the vertex function in this critical regime leads to 
the homogeneous equation 

The RG functions P ( g ) ,  y+z(g), y+(g)  may be obtained as power series in g and e 
by applying equation (3.2) to three independent vertex functions and solving the three 
equations simultaneously. Suitable choices for these independent vertex functions are 

First we must express the vertex functions as a function of the variable t, the 
reduced temperature, instead of K. The introduction of t can be accomplished by 
mass renormalisation using a counterterm. We start by identifying the zero of the 
two-point vertex function at zero external momentum calculated with the bare propa- 
gator as a function of K with the zero of the two-point vertex function calculated 
with a renormalised propagator and a mass counterterm, 

F4)(0; t ,  g, A), rlZ)(o; t ,  g, A), r(''(4; 0, g, A). 

r"'(0; K = K,, g ,  12) = 0 

= P ( o ;  t = 0 ,  g, A) = 0.  (3.3) 

A suitable definition of the counterterm is achieved by decomposing (2.16) for 
Z4'" in the following fashion: 
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The first term in 4(q)4(-q)  in (3.4) is momentum independent and is the counter- 
term. The second term in (3.4) in d ( q ) 4 ( - q )  is the inverse of the renormalised 
propagator. 

Condition (3.3) for the two-point vertex function requires that the mass counter- 
term is O(g)  so that 

(3.5) 

This has immediate consequences for the renormalised propagator. The prefactor 
(uK,)-’ in (3.4) can be expressed as a power series in g with coefficients determined 
by (3.3) for the mass counterterm. There will be additional terms at each order in g 
in a graphical expansion coming from this expansion of the renormalised propagator 
in terms of g. For calculational purposes it is convenient to separate the power series 
in g arising from the factor (vK,)-l and define an effective propagator 

K,’ = U + O(g). 

Integrals calculated with this effective propagator give rise to terms of the form 
In t/A’ where the reduced temperature t is defined by 

4. Graphical expansion 

The graphs with up to two loops contributing to the two- and four-point vertex 
functions are displayed in figures 1 and 2. It is convenient to classify the graphs by 
their order in g including contributions arising from expanding the counterterm and 
prcpagators as power series in g. The overall sign of the graphical contribution will 
be made explicit, as will the canonical dimension in terms of the momentum scale of 
the graph: 

r”’(q; t, g, A)=[Gh2’(4, t, A)I- l+gZ~(q,  t)-g222(q, t )+O(g3) ,  (4.1) 

~ ‘ ~ ’ ( 4 ;  I, g, = ~ ‘ ( g  -g2nl(q,  t )+g3n2(q,  t ) + ~ ( ~ ~ ) ) .  (4.2) 
Cl(q, t )  is the sum of figures l (6)  and l ( c )  plus a contribution from figure l ( u )  at 

O(g). C 2 ( q ,  t )  is the sum of figures l(d)-l(f)  plus contributions from figures l (u) - l (c ) .  
n,(q, t )  denotes figures 2(b) and 2(c) and H2(4, t )  is the sum of figures 2(d)-2(1) plus 
contributions from 2(6) and 2(c) at the appropriate order. 

- - - e  

le1 If1 (571 

Figure 1. Graphs with up to two loops contributing to the two-point vertex function after 
mass renormalisation. The cross on the propagator denotes the mass counterterm. 
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i a l  ibl 

n 

i e l  I f )  

Figure 2. Graphs with up to two loops contributing to the four-point vertex function after 
mass renormalisation. 

The presence of six- and eight-point vertices gives rise to additional diagrams such 
as figures l (g) ,  2(c) and 2(k) not seen in a pure 4 4 ( x )  theory. These diagrams have 
a higher degree of ultraviolet divergence, but this is tempered by dimensional factors 
present in the six- and eight-point coupling constants in (2.20). The result of this 
trade-off is that diagrams containing a six- or eight-point vertex are no more divergent 
than the normal c $ ~ ( x )  theory graphs (Brezin 1982). 

We now apply the RG equation (3.2) to the vertex functions given in (4.1) and 
(4.2) for the three independent vertex functions r(’)(q; O,g, A), r‘2)(O; t ,  g, A) and 
r4(O; t, g, A). Solving the equations simultaneously allows the RG functions /3 (g), 
y+z(g), y+(g) to be expressed as the sum of diagrams. The only graphs dependent on 
the external momentum for the two-point functions are figures l ( a )  and l (d)  which 
simplifies the computation of &(q, 0): 
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These RG functions given by (4.3), (4.4) and (4.5) are finite in the limit t / A 2 + 0  
so any divergences in individual diagrams must cancel. We now use the idea of 
universality to simplify the calculation by telling us what diagrams must be evaluated 
in order to obtain these functions to second order. 

5. Universality 

Scaling behaviour of the vertex functions is obtained at the fixed point g = g* where 
p ( g * )  = 0. The exponents obtained from y,&*) and y4(g*) are universal, i.e. do not 
depend on the details of the Hamiltonian. The universality class of the Hamiltonian 
depends only on general features such as the dimensionality of the system and the 
number of components of the field. This universality requirement imposes conditions 
on the RG functions as follows. We expand these functions as power series in  E and 
g ;  

P ( g )  = --Eg + P o g 2 - P 1 & g 2 - P 2 g 3 + O ( g 4 ,  E g 3 ,  E 2 g 2 ) ,  (5.1) 

Then the condition, using equation (5.1) for P ( g ) ,  

P k * )  = 0 

g* = ( E / P O ) ( l  + E ( P Z I P ? i  +P1 /P0)+O(E2) ) .  

implies that the fixed point is given by 

(5.4) 

The universal exponent governing the corrections to scaling is given by 

= p ’ ( g * ) = &  - ( P ~ / & ) E * + O ( E ~ ) .  ( 5 . 5 )  

The ratio p2/p?i is fixed by the universality class of the Hamiltonian. There is 
always the freedom to rescale the coupling constant g which is reflected in the numerical 
value of Po. Having determined Po, however, the value of P2 is uniquely prescribed. 
The graphical content of P 2  can be found from (4.5). It should be noted that all 
contributions to p2 arising from the presence of six- and eight-point vertices explicitly 
cancel, so that as required P z  is independent of their inclusion in the field theoretic 
model. We have thus reduced the task of finding the non-universal fixed point to 
O(E’ )  to finding the contributions to the terms Po and pl. 

Similarly the universality of the exponent 77 obtained from y 4 ( g * )  means that y 3  
is determined up to the scale of g and hence Po. Universality of the exponent v 
requires that -y62(g*) has given coefficients as a power series in E ,  again up to rescaling 
g :  

y b q g * )  =E, [ 1 + E  (Pi  -+,+-+ P 2  Y1 3 + 0 ( & 2 ) ] .  
P O  P P o  Y o  Y O P O  

This allows us to express y2 in terms of P1, P z  and y l .  This means that only the 
one-loop graphs that contribute to Po, p1 and y1 need be determined in order to 
perform a two-loop calculation for the amplitude of the leading correction to scaling 
in the susceptibility. 
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The only integrals that need to be considered are therefore the one-loop integrals 
with one and two powers of the propagator given respectively by 

B Z  

I l ( t ,  A) = ( 2 ~ ) - ~  I ddq db”(q, t, A), (5.7) 

After factoring off the explicit A-‘ momentum dependence which will be cancelled 
by contributions from the coupling constants, we may expand the integrals as a power 
series in E to obtain the general forms in the limit t /A2 + CO: 

I l ( t ,  A) =A0A2--iBlt  ln(t/A2)+Clt -&Dlt ln(t/Az) +$&Elf  ln2(t/A2) + E F T [  + &KOA2, 
(5 .9)  

(5.10) 

We now wish to express II1(q, t ) ,  Cl(q, t )  in terms of these coefficients and so to 
find Po, pl, yo and yl. Using the mass counterterm consistency equation (3.3), we 
may now evaluate the O(g) term in (3.5) that appears as a prefactor before eb”(q, t ,  A) 
in (3.4). This enables the contribution to Zl(q, t )  from figure l ( a )  to be expressed in 
terms of the coefficients of (5 .9) ,  as well as obtaining the mass counterterm itself to 
the correct order: 

(5.11) 

(5.12) 

We now express equations (4.4) and (4.5) for the RG function p ( g )  and y4z(g) in 
terms of the coefficients defined in (5.9) and (5.10) using (5.11) and (5.12). Comparing 
the resulting expressions with (5.1) and (5.2) order by order in E and g allows the 
following identifications to be made: 

Idt ,  A) = -$Bz ln(t/A2) + CZ - ~ E D Z  ln(t/A2) + tsEz ln2(t/A2) + &FZ. 

&(O, t )  = i[ I1( t ,  A) -11(0, A)]-iIl(O, A)AW2t, 

IIl(0, t )  = $Iz(t, A) +2A-Z11(t, A). 

1 p 1 = %Cz - 0 2 )  + 2A 0,  Y O =  - # i t  yi = i(ci -Di -Ao), p -2 o - ZBZ, 
(5.13) 

together with the consistency conditions, 

(5.14) 

which ensure that p1 and y1 remain finite as t /Az  + 0. 
By using the idea of universality we have thus reduced the problem to the task of 

determining the coefficients Bz,  Cz, Dz,  B1, C1, D1 andAo of the asymptotic behaviour 
of the two integrals Iz and Il in the regime [/Az + 0. 

These coefficients are determined for the sc and BCC lattices in appendices 1 and 
2 respectively and the results are displayed in table 1. 

E -1 
1 - zBi, E -1 z - ZBZ, 

6. Susceptibility 

The susceptibility for the original lattice model in the high-temperature phase in a 
uniform external field H is given by 

x = aMi/aHIH=o (6.1) 
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Table 1. 

Simple cubic Body centred cubic 

0.239 0.237 

-0.974 0.276 

0.81 1 0.811 

-0.81 1 -0.811 

0.175 -0.230 

0.058 -0,794 
0.386 -0.051 

& T 2 ~ ( 1 + 0 . 6 1 8 ~ )  &~*&(1+0.103&)  

where the magnetisation at the site i, Ma, is given by 

MI = (s,) = a In Z{H}/aH,. 

Then using equation (2.3) for Z { H }  we obtain for the susceptibility 

l N  a a x = -  - -hZ{H} 
N i , j = l  aHi dHj 

1 N  l N  
N N , = I  

= - 1 L(tanh(4,L-”’) tanh(q5,L-”’))+- C (sech’d,). (6.3) 

We may expand the hyperbolic function in (6.3) as a power series in L-’ whose 
coefficients are correlation functions in the fields 4z and df. The second term in (6.3) 
is purely local and is negligible compared with the first term in the thermodynamic 
limit and will be neglected in the following. We may examine this expression in terms 
of the rescaled momentum variables 4(q )  defined in (2.15) from (2.7). The expansion 
in L-’ now becomes an expansion in g defined in (2.19) with the result for the 
susceptibility in terms of Green functions in momentum space: 

x =G”’(O; t ,  g, A)-$gAF-’Gil)(O; t ,  g, A)+&g’A4-*‘G:’’(0; t, g, A) 

(6.4) +L 2 28-4 
36g A G!? (0 ;  t, g, A) + O(g3). 

In (6.4) a subscript on the Green functions denotes the insertion of one composite 
operator in the field ~ 5 ’ ( q )  of the degree given in the subscript. These insertions are 
made at zero momentum. The superscript refers to the number of external legs as 
before. 

We decompose the Green functions with insertions of the composite operators in 
terms of vertex functions 

A‘-’G\’)(O; t ,  g, A) = G”’(0; t, g, A)[A‘-’~~”(O; t, g, A)], (6.5) 

(6.6) A’F-4Gk1)(O; t ,  g, A) = G”’(0; t ,  g, A)[Ae-2ri’)(O; t ,  g, A)], 

A2‘-4Gi::(O; t, g, A) = G”’(0; t, g, A)[A‘-’r$’)(O; t, g, A)]’ 

+ A ~ & - ~ ~ : : : ( O ;  t, g, A). (6.7) 
We now examine the vertex functions occurring in (6.5), (6.6) and (6.7) as power 

series in g to the required order for substitution into (6.4). The graphs contributing 
to the vertex functions are given in figures 3, 4 and 5 .  Let figure 3(a)  be denoted by 
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-8 

-0 

-03 
(cl 

Figure 3. Graphs with up to two loops contributing to the one-point vertex function with 
the insertion of a composite three-point operator. 

8 
Figure 4. Graphs with up to two loops contributing 
to the one-point vertex function with the insertion 
of a composite five-point operator. 

Figure 5. Graphs with up to two loops contributing 
to the zero-point vertex function with the insertion 
of two composite three-point operators. 

Hl(q, t), figures 3(6), 3(c) and 3(d) by H2(q, r ) ,  figure 4 by H&, t )  and figure 5 by 
H4(4, t ) :  

(6.8) 

(6.9) 
(6.10) 

The result of the explicit powers of the momentum scale multiplying the graphs 
is to pick out only the leading ultraviolet divergence of the graphs eliminating the 
dependence on t. In (6.8) and (6.9) the momentum factors cancel, leaving only a 
numerical coefficient. These may be written as 

AE-zr:l)(o, t, g, A) = A ' - ~ [ H ~ ( O ,  t )  -gHz(o, t )  + o(gz)], 

A ~ ' - ~ ~ : ~ ) ( O ,  t, g, A) = A ~ ' - ~ [ H A O ,  t )  + o(g)l ,  

~~~-~rr:::(o, t, g, A) = A ~ E - ~ [ H ~ ( O ,  t )  + o(g)l .  

AE-2ri1)(0, t, g, A) = 3Ao-g8 + O(g2) +O( t /A2) ,  

A2'-4r:1)(O; t ,  g, A) = 15Ag + O(g) + O(t /A2) .  

(6.11) 

(6.12) 

8 represents the coefficient of the leading ultraviolet divergence of the graphs in 
H2(0, t )  and A. is defined in (4.9). 

H4(0, t )  has only A2E-2 ultraviolet divergence so that substitution into (6.10) leaves 
it with an overall momentum scale K 2 .  As G'2'(0, t, g, A) has its leading divergence 
as t- ' ,  then when (5.10) is substituted into (5.7) the second term can be seen to be 
O(t/A2) with respect to the first, and so may be dropped in the critical regime. This 
allows G"'(0, t, g, A) to be pulled out as a common factor in (6.41, giving the following 
expression for the inverse susceptibility: 

, ~ - ' = r ( ~ ) ( O ; t ; g ,  A ) [ l + A ~ g + a g ~ + O ( g ~ ) ] ,  a = @ - '  4Ai. (6.13) 

The effect of nonlinear coupling of the field d(x) to the external field H ( x )  has 
introduced a correction (in the form of a power series in g) to the normal practice of 
identifying the inverse susceptibility with the two-point vertex function. 
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7. Method of characteristics 

We now seek to find the crossover scaling form for the susceptibility as its critical 
behaviour changes from being described by the Gaussian fixed point to that described 
by the Heisenberg fixed point as criticality is approached. This will enable us to derive 
the form of the susceptibility in the asymptotic regime, and will yield an E expansion 
for the amplitude of the leading corrections to scaling. The method is that of Bruce 
and Wallace (1976).  It uses the method of characteristics to relate the vertex functions 
close to criticality to those far from criticality where a perturbation expansion for the 
vertex function may be trusted. 

We start from the homogeneous RG equation for the vertex functions (3 .2)  with 
the RG functions P ( g ) ,  y d 2 ( g ) ,  y d ( g )  having the expansions given in ( 5 . 1 ) - ( 5 . 3 ) ,  

We define a running coupling constant g ( T )  and a running temperature t ( 7 )  to 
examine the vertex functions when the cut-off A is rescaled by a factor e'. Then 
running quantities are chosen to satisfy 

with the initial conditions 

This allows us to solve formally the RG equation (3 .2)  using the functions defined 
in (7 .1)  and ( 7 . 2 ) :  

We solve (7 .1)  and (7 .2)  subject to the initial conditions (7 .3)  perturbatively as a 
power series in g and E correct to the required order using a form suitable for 
expanding about the fixed point g*. The results are 

where 

w = P ' ( g * ) = e  - ( P ~ / P ~ ) E ~ + O ( E ~ ) ;  

where 

+-+7, p = - + E  2+- ) P o  ( P  0 PI? P o  P o  

Y o  Y 2  2YoP2 Y1 YOPl 

(7 .5)  

(7 .8)  

c = yoP2lPi  + y 2 / P o ;  (7 .9)  

(7 .10)  
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(7.11) 

(7.12) 

It should be noted that w ,  p and a are universal. 
Using equation (7.4) we may now express P2)(o;  g,  t, A) in terms of P 2 ) ( o ;  

t ( T ) ,  g ( T ) ,  A eT). We simplify by choosing A = 1, and expressing the vertex function in 
graphical terms using the coefficients defined in (5.9) we obtain 

F ( 2 ) ( O ;  t ,  g ,  1 )  = exp - y . + [ g ( ~ ' ) ]  di')r(r) ( Io 
x ( 1  - i g ( 7 ) B 1  I n [ t ( ~ ) e - ~ ' ] + f C ~  - i A o + O ( E g ( 7 ) ,  g 2 ( T ) ) } .  (7.13) 

We make a choice of T such that the perturbation series in g ( r )  may be trusted. 
A suitable choice is 

(7.14) 

which eliminates all powers of logarithms occurring in (7.13). Although the choice 
(7.14) for T means that terms which we have neglected as being of order ( t ( T ) / A 2  e") 
are 0 ( 1 ) ,  this causes no problems as the RG equation (3.2) holds for the leading 
divergent terms alone, regardless of the presence of less divergent terms that may be 
of the same order for particular choices of T (see Bruce and Wallace 1976). 

We substitute for f ( T )  and the exponential factor in  (7.13) using (7.7) and (7.10) 
and finally use (7.14) in (7.13) to give the following expression for the inverse 
susceptibility: 

27 t ( r ) = e  

We may rewrite this expression, separating off all dependence on g into a non- 
universal overall scale factor Z ( g )  which is a power series in g correct to the order 
kept in (7.15): 

~ - l =  Z ( g ) t  ( g* g ( T ) ) a  +'[ 1 + (C + b + iCl - i A , ) g ( ~ ) ] .  
g - g  

Condition (7.14) substituted in (7.5) gives 

Solving (7.17) for g close to g* yields 

(7.16) 

(7.17) 

(7.18) 

where corrections to scaling are governed by the exponent W : 
1 2s  2 w = w v  + o ( ~ ~ ) .  
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Substitution of (7.18) into (7.16) yields an expression explicitly displaying correc- 

= i + &  + & 2 + ~ ( E 3 ) ,  (7.19) 

tions to scaling, with a different overall scale factor Z ’ ( g ) :  

= Z ’ ( g ) t Y [ l  + tGA ( g ) ] ,  -1  
,y 

Equation (7.20) for the amplitude of the leading correction to scaling is only valid 
for g close to g*.  For the situation further from criticality the full crossover form 
(7.16) should be used for the susceptibility. 

8. Results and discussion 

The model examined in this paper has interesting features as a field theory. The 
presence of higher-order interactions, normally regarded merely as irrelevant, has of 
course noticeable effects on non-universal quantities such as the fixed point (5.4) using 
the contributions calculated from graphs in (5.13). The term in A .  would not be 
present in P I  in the usual d4 theory. These higher-order interactions also influence 
the coefficients appearing in the amplitude of corrections to scaling in (7.20). In 
contrast, universal quantities are found as expected to be independent of the presence 
of these interactions with explicit cancellations occurring in the graphs contributing 
to p2 in (4.5) and in y42(g*) in (5.6). The introduction of an external field coupled 
nonlinearly to the field 4 ( x )  was found only to change the amplitude for the susceptibil- 
ity by a prefactor which is a power series in g in (6.13). The analysis performed in 
8 6 shows that this power series merely contributes to an overall scale factor at the 
order in E and g as the coefficients of the power series are not functions of f or A. 
The presence of the power series prefactor would introduce a contribution to the 
amplitude at O(E’) when a more careful factorisation of (7.15) to extract the overall 
scale factor Z ( g )  in (7.16) would have to be performed. 

‘The fixed points have the values shown in table 1 correct to second order in a 
presumably asymptotic series in e. It should be noted that the term of O ( e 2 )  is much 
smaller for the BCC lattice than for the sc lattice. To check the convergence of these 
series it would be desirable to perform a higher-order calculation. This would be 
rendered very difficult by the need to calculate graphs with more than one loop where 
the complicated form of the propagator and the shape of the Brillouin zone prohibit 
the use of many of the common tricks for evaluating higher-order graphs. We must 
draw what conclusions we may with the figures available from table 1,  and can 
presumably attach more confidence to numerical results for the BCC lattice than for 
the sc lattice due to the smaller coefficient of the O ( e 2 )  corrections to g*. 

The expression for the fixed point of L corresponding to g* can be evaluated in 
two ways. We may identify L* = 2 w / g * ,  having evaluated g* for given e ,  or we may 
express L* as a power series in E and then insert the prescribed value for E. The 
difference between the two methods is considerable for the sc lattice but only slight 
for the BCC lattice. We shall use the first method of evaluating L* as the specification 
of L in a given dimension uniquely defines g. Using the fact that w = 1 for the sc 
lattice and w = t for the BCC lattice, with w defined in (2.13), we obtain the following 
results in three dimensions: 

L* = 2 w / g * ,  (8.1) 
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d = 3  L& = 1.50, 

d = 3  L&C = 1.10. 

Before these results can be compared with high-temperature series work, the 
relationship between the number of copies L and the spin s of an Ising system must 
be considered. The number of possible spin states is the same with L copies and a 
spin of magnitude L/2. The copy model will have a binomial distribution of spin 
values as opposed to the flat distribution for the spin case. We may therefore identify 
the L copy model with a spin model of s = L/2, but this spin model will be impure 
with traces of behaviour of lower values of s in addition. This identification is exact 
for L = 1 and, presumably, reasonable for low L. Results (8.2) and (8.3) suggest that 
the amplitude of confluent singularities should vanish for a spin value slightly greater 
than s = 4 for both lattice types. There is little in the literature with which to compare 
this result, but the fact that confluent singularities have proved very difficult to find 
for the spin-4 sc model and the spin-f BCC model may partially substantiate this result. 

Nickel (1981) has shown that the amplitude of the confluent singularities is 
dependent on the spin s of the BCC Ising model in three dimensions. Further, the 
amplitude of corrections to scaling does indeed change sign between s = i and s = 00, 

indicating that there is a zero in the amplitude for some s between s = i and s = 00. 

We may now evaluate expression (7.20) for specific lattice types and a given 
dimension using the coefficients given in table 1. The general forms of the amplitudes 
for the sc and BCC lattices are 

(8.4) 

(8 .5 )  

With the connection made between spin s and number of copies L (and hence g),  
the functional form of the amplitude given by (8.5) is seen to be in good agreement 
with Nickel’s findings of the change of sign in the amplitude between s = i and s = 00 

with a zero in the intermediate region. 
Due to the equivalence of L = 1 to s = f we may use (8.4) and (8.5) to determine 

the amplitude of corrections to scaling for the spin-; Ising model in three dimensions 
for both the BCC lattice and the sc lattice: 

A(g)sc = tS+40.329-&% ln(g/g*)11(1 -g/g*), 

A (g)BCC = {f + [ O m  - &% In(g/g *)1)(1 - g/g *). 

A (s = 4, d = 3)sc = 0.243, 

A(s  =$, d =3)Bcc=O.O62. 

Nickel (1982) estimates the amplitude for the spin-f case on the BCC lattice using 
high-temperature series methods. He does this by evaluating the difference in ampli- 
tudes between s = f and s = 00 and assigning most of the difference to the amplitude 
for s = i. The value he quotes is 

(8.8) 

This value depends crucially on what value for the correction to scaling exponent W 
he takes. This number is taken from the RG estimates, but the series in e which 
determines 6 is poorly convergent and it is only by resumming the series taking into 
consideration the dominant terms at each order in E that the value W = 0.5 is achieved. 

Roskies (1981) also estimates the amplitude of corrections to scaling for the spin-4 
Ising model on the BCC lattice using high-temperature series methods. He directly 

1 A ( ~ = ~ , d = 3 ) B ~ c = 0 . 1 3 .  
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estimates A(s = i, d = 3)Bcc, but again this value is crucially dependent on the assump- 
tion W = 0.5. His estimate is 

(8.9) 

While there is very encouraging agreement between (8.9) and (8.7) this must not 
be relied on too heavily. In determining the amplitude of the leading corrections to 
scaling as a series in E in (8.4) and ( 8 . 5 ) ,  it must be noted that the term of O ( F )  is of 
the same magnitude as the term O(1). In addition, contributions to the amplitude 
contain terms in the series that determines W (which is poorly converged as already 
stated), as can be seen from the examination of (7.16) in conjunction with (7.18). 
The small magnitude of the amplitude is largely attributed to the proximity of L* to 
L = 1, to which may be attached more confidence due to the size of the 0 ( e 2 )  term 
for g*. 

The larger magnitude of the amplitude of corrections to scaling in (8.6) for the sc 
case originates in the fact that L* is not as close to L = 1 as it is for the BCC case. 
The series for g* appears poorly converged and so no great confidence can be placed 
in the, estimate (8.6). The consistent failure of high-temperature series work (e.g. 
Gaunt and Sykes 1979) to detect confluent singularity terms may indicate that the 
evaluation of L* to higher orders would push L* closer to L = 1, so reducing the 
amplitude given by (8.4). 

In summary, the analysis carried out in this paper bears out the qualitative features 
of high-temperature series work on amplitudes of corrections to scaling (Nickel 1981), 
and in addition suggests a good numerical comparison with high-temperature series 
estimates for amplitudes (Nickel 1982, Roskies 1981). 

0.05 < A  (s = i, d = 3) < 0.07. 
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Appendix 1. Simple cubic lattice 

We consider the evaluation of the integrals Il(t, A) and 12(t, A) defined in (5.7) and 
( 5 . 8 )  for a sc lattice with lattice spacing A-'. The sum over lattice vectors in (3.6) 
may be performed with the result 

(Al . l )  

with q a d-dimensional vector with components qi, i = 1, . . . , d, and the coordination 
number of the lattice v = 2d. Integrals over the Brillouin zone of the lattice take the 
following simple form for any function F ( q ) :  

(A1.2) 

The combinations of integrals that must be evaluated are given in (5.11) and (5.12) 
for Xl(O,  t )  and nl(O, t ) .  
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We shall give a detailed analysis of I’(t, A); corresponding analyses can be carried 
out for the other integrals appearing in (5.11) and (5.12): 

(A1.3) 

We rescale the momenta q1 = q i K 1  to make explicit the momentum scale of the 
integral. This factor of A-‘ will be cancelled by AE coming from the coupling constant, 
and it will be omitted in the following as will the primes on the rescaled momenta: 

= 1 + ( 2 ~ ) - ~  i = l  fi (j-~dqi)(z2/y’-2z/y) (Al.4) 

where 

z = 2dKJK = 2d (1 + 

y = z  -2  1 cosqi > o  
d 

r=l 
for t > 0. 

(A1.5) 

(A1.6) 

We now express the integrand in (A1.4) as a Laplace transform with respect to 
the variable y. This transform is well defined for y > 0 

(A1.7) 

We now change the order of integration in (A1.7) and use 

d d 

e-’’ = exp[ -s( z - 2 1 cos qi)] = e-’’ n exp(2s cos qi) (A1.8) 
i = l  i = l  

and the identity 

e-“ = e-2ds exp(-2dsth-’) 

to factorise the momentum integrals, yielding 

(A1.9) 

I~ ( t ,A)=1+~o~ds [exp( -2ds tA~’ ) (z ’ r -2 r )  

The one-dimensional momentum integral may be performed to give a modified 
Bessel function of order zero which allows (A1.lO) to he expanded as a power series 
in e = 4 - d :  

Pot: .CC 

I d f ,  A) = 1 + J  [exp(-8stA-’)(64s - 16)(10(2s) ds - E  J {exp(-8stA-’) 
0 0 

x (10(2s) e-2s)4[(64s - 16) ln[Io(2s) e-”1+32s -41lds 

+ O(E 2 ,  + O(t/A’). ( A l . l l )  
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From the first and second terms in (Al.11) the coefficients B2 and C2 defined in 
(4.10) can be obtained and from the third term E2 and D2 can be obtained. Similar 
methods can be used to determine the coefficients in (5.9). The results are noted in 
table 1. 

Appendix 2. Body centred cubic lattice 

For a BCC lattice with lattice spacing A-' in d dimensions then the sum over lattice 
vectors in (3.6) may be performed yielding 

.. (2)  2d nf=l cos(qi /2A) 
Go (" " A)=2dA2Kc/K -2d nf='=, cos(qJ2A) (A2.1) 

with q a d-dimensional vector with components qi, i = 1, . . . , d, and the coordination 
number v = 2d. 

Integrals over the Brillouin zone of a BCC lattice in d dimensions have a very 
complex form. We may use the general result which holds for any general dimension 
for integrands which are of a certain functional form, 

which can be proved using the symmetry properties of the Brillouin zone. This allows 
us to proceed to evaluate the combinations of integrals given in (5.11) and (5.12) for 
&(O, t )  and nl(O, t ) .  

We shall give a detailed analysis for 12(t, A); corresponding analyses can be carried 
out for the other integrals appearing in (5.11) and (5.12). 

Using (A2.1) and (A2.2), we may recast (5.8) in the form 

(A2.3) 

We rescale the momenta q1 = qi/(2A) to make explicit the momentum scale of the 
integral. This factor of A-' will be cancelled by A' coming from the coupling constant, 
and it will be omitted in the following, as will the primes on the rescale momenta. 
We start from the following expansion and change of variables: 

(A2.4) 
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where 

(A2.5) 

a = K, /K  = (1 + fAW2)-' < 1 for t >O. (A2.6) 

We now express the integral of (A2.4) as an inverse Mellin transform with respect 
to the variable y defined in (A2.5). This is well defined for the condition a < 1 in 
(A2.6): 

+ F ( 2 , s , s + l ;  -a)-2F(l,s,s+l;a)-2F(l,s,s+l;-a)]) (A2.7) 

where F(a,  p, y ;  z )  is the hypergeometric function, s is a complex variable, and 
0 < C < 1 for the integrals to be well defined. We interchange the order of integration 
where the choice of transform enables the integrals over the momentum components 
to be factorised, yielding 

-2F(l,s,s+l;a)-2F(l,s,s+l; -a)] 
-/2 .['I dqexp(-s lncosq)  

7T -=/2 
(A2.8) 

Using the result 

dq exp(-k In cosq)  = [ r ( t - ik ) /T( l  - i k ) 7 ~ ' ' ~ ]  for k < 1 (A2.9) 

equation (A2.8) takes the final form 

I2(t,A)=2+- ICii"%[F(2, s, s + 1; a ) + F ( 2 ,  s, s + 1;  -a) 
27rl c - im s 

Equation (A2.10) may be evaluated by contour integration techniques. The integral 
may be closed at infinity in the negative half plane, with the result that 12(t, A) is given 
by the sum of the residues of the hypergeometric functions which have poles for s 
equal to a negative integer. 

For a general term in (A2.10) we have, for an integer n, 

lim 

where 

~ ( v ,  s, s + I ,  a)s-' = r(-n)(Y)n(-i)nanF(v +n, 0, n + I ,  a )  (A2.11) 
s --n, n # 0 

F(Y +n, 0, n + 1, a)= 1, wn = r(v +n)/ryv) .  
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The residue from the hypergeometric function is proportional to the residue of 
the gamma function and, together with the result that for s = 0 the residue is equal 
to -2, we have for (A2.10) 

(A2.12) 

Expanding (A2.12) as a power series in E yields 

From (A2.13) the coefficients B2,  C2, D2,  E2 and F2 defined in (5.10) can be found 
and are listed in table 1. 

Appendix 3. The n -component spin model 

We consider the generalisation of the model to the case where the spin variable, si, 
has n components. The O(n)  symmetric reduced Hamiltonian is given by, with the 
symmetry breaking external field Hi, 

(A3.1) 

We take the spin at site i, si, to be the sum of L copies of classical n-component 
spins uim, m = 1 , 2 , .  . . , L normalised by a factor of L-l l2  

si = L-'I2 f ujm, / u i m I = n  1 / 2  . 
m = l  

(A3.2) 

The configuration sum over the si in evaluating the partition function 2 becomes 
the product of L integrals over the solid angle of an n-dimensional hypersphere at 
each site of the lattice; 

N L  
Z = exp(-%/kT) = n [ dni,  exp(-%/kT) 

(Si i = l  m = l  

where the reduced Hamiltonian is expressed in terms of the variables uim. 

extract a field theory yields 
Performing a Hubbard transformation in the variable &i with n components to 
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The integration over solid angles in (A3.3) reduces to performing 

xexp{[(4i +Hi)(Ln)1/2 cos ~im]})] (A3.4) 

where s , - ~  is the surface area of an (n - 1)-dimensional sphere and (di + H i )  is the 
modulus of (q5i + H i ) .  The one-dimensional integral in (A3.4) may be performed with 
the result 

(A3.5) 

where In/2-1(x) is a Bessel function. 
The interaction terms may again be obtained by expanding the Bessel function as 

a power series in Qi for zero external field. Defining the dimensionless coupling 
constant g, with w defined in (2.13), by 

g =4!w/4(n +2)L (A3.6) 

we may decompose the reduced Hamiltonian into a quadratic term and interaction 
terms ordered as a power series in g. On taking the thermodynamic limit and using 
a rescaled field variable in momentum space +(q)  defined in (2.15), we obtain for 
these two terms 

BZ 

- - ( 2 ~ ) - ~  ddq 1 ( A 2 K - ' ( q ) - n 2 ) + ( q ) . Q ( - q ) ,  (A3.7) 

(A3.8) 

In (A3.8) scalar products between the n -component fields must be taken in order 
to maintain the O(n) symmetry of the Hamiltonian. 

The theory of this n-component model now parallels the discussion of the one- 
component model using the usual techniques for handling n -component fields. There 
are two sources of dependence on the number of components; that arising from the 
combinatoric factors of graphs and that coming explicitly from the coupling constants 
in (A3.8). In terms of the coefficients defined in (5.9) and (5.10) the expression for 
the fixed point g* reads 

Using the prescription 

(A3.9) 

L* = 4! W/4(n + 2)g* (A3.10) 
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we obtain the following results for the sc and BCC lattices in three dimensions (using 
table 1 for BZ, C2 and Ad: 

L&(n = 2) = 1.216, 

Ls*c(n = 3) = 1.048, 

L&(n = 2) = 0.880, 

L&(n = 3) = 0.752. 

(A3.11) 

(A3.12) 

(A3.13) 

(A3.14) 

Again the expression for g* as an E expansion appears to be much better convergent 
for the BCC case than the sc case and so more reliance may be placed on figures 
obtained for the BCC lattice. 

The analysis of 8 6 for the susceptibility gives the same qualitative results as before, 
that is modifying the relation between the susceptibility and the two-point vertex 
function by a power series in g with different numerical coefficients. This allows the 
analysis of § 7 to proceed as before to obtain the general form of the amplitude of 
the leading corrections to scaling as 

A ( ~ ) = ( K I + E [ K ~ + ~ + ~ - ~ + K ~ K ~ ~ ~  P :  P o  P o  (A3.15) 

with 

n + 2  ( n  + 2)(n + 22n + 52) 
n +8’  2(n + 8)’ 

K1=- K2 = , 

( -n2+8n  +68) _-  ~3 ( n + 2 )  
K3 = 

2(n +8)’ ’ P $  - 2(n + 8)2’ 

P 2  3(3n +14) 
PO +8)’ P i -  ( r ~ + 8 ) ~  ’ 

~ 0 - ( n + 2 )  _ -  

Using (A3.15) we may predict the amplitude for the leading corrections to scaling 
for the classical Heisenberg models with n = 2 and n = 3 in three dimensions for the 
two lattice types with the results: 

A ( n  = 2 ) s ~  = 0.216, (A3.16) 

A(n = 3 ) s ~  = 0.040, (A3.17) 

A(n  = ~ ) B c c =  -0.129, (A3.18) 

A(n = ~ ) B c c =  -0.359. (A3.19) 

Information from high-temperature series for the n = 2  and n = 3  cases is much 
more sparse than for the Ising model, and the shorter series do not enable accurate 
determinations to be made of exponents (see Rushbrooke et a1 1974 for a review) 
and no confirmation of the presence of confluent singularities has yet been attempted. 
Again the estimates (A3.18) and iA3.19) are to be trusted more than (A3.16) and 
(A3.17) due to the better determination of g* for the BCC lattice. The most striking 
result from (A3.18) and (A3.19) is that the amplitude of the confluent singularities 
should have the opposite sign for n = 2  and n = 3  from the Ising model, and this 
qualitative feature may be easier to determine from high-temperature series work. 
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